\qquad
Section 9.3 - Taylor's Theorem
Lagrange Error Additional Practice
For Problems 1 and 2, use Taylor's Theorem to determine the error bounds of the approximations.

1. $\cos (0.3) \approx 1-\frac{(0.3)^{2}}{2!}+\frac{(0.3)^{4}}{4!}$
2. $e \approx 1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}$
3. a. Find a $4^{\text {th }}$ degree Taylor polynomial for $\ln x$ centered at $x=4$.
b. Find the Lagrange error bound for the polynomial on the interval [4, 4.5].
4. Let $f(x)$ be a function that is continuous and differentiable at all real numbers, and let $f(3)=1, f^{\prime}(3)=3, f^{\prime \prime}(3)=7$, and $f^{\prime \prime \prime}(3)=5$.
a. Write a $3^{\text {rd }}$ order Taylor polynomial for $f(x)$ about 3 .
b. If $f^{(4)}(x) \leq 6$ for all x, find the Lagrange error bound for the polynomial on the interval [2.9, 3.0].
5. Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about $x=2$ is given by $P_{3}(x)=7-9(x-2)^{2}-3(x-2)^{3}$.

Suppose the fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 6$ for all x on the closed interval [0, 2]. Use the Lagrange error bound to justify why $f(0)$ is negative.
6. Use graphs to find a Taylor polynomial $P_{n}(x)$ for $\cos x$ so that $\left|P_{n}(x)-\cos x\right|<0.001$ for every x in $[-\pi, \pi]$.
7. For approximately what values of x can you replace $\sin x$ by $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ with an error magnitude no greater than 5×10^{-4} ?
a. Find the interval using the Remainder Estimation Theorem.
b. Find the interval graphically.

Answers:

1. $\left|R_{5}(0.3)\right| \leq 1.013 \times 10^{-6}$
2. $\left|R_{4}(1)\right| \leq 0.02266$
3. a. $\quad P_{4}(x)=\ln 4+\frac{1}{4}(x-4)-\frac{1}{32}(x-4)^{2}+\frac{1}{192}(x-4)^{3}-\frac{1}{1024}(x-4)^{4}$
b. $\left|R_{4}(x)\right| \leq 6.104 \times 10^{-6}$
4. a. $P_{3}(x)=1+3(x-3)+\frac{7}{2}(x-3)^{2}+\frac{5}{6}(x-3)^{3}$
b. $\left|R_{3}(x)\right| \leq .000025$
5. $P_{3}(0)=-5$ and $\left|R_{3}(x)\right| \leq 4$ on $[0,2] ; \therefore-9 \leq f(0) \leq-1$.
6. $P_{12}(x)$
7. a. $-1.141 \leq x \leq 1.141$
b. $-1.144 \leq x \leq 1.144$
