Polar Coordinate System

- · Origin O is called the pole.
- A ray (usually) drawn in the direction of the positive x-axis in Cartesian coordinates is called the polar axis.
- A point P in the plane is identified by the coordinates (r, θ) where r is the distance of the point from the origin and θ is the angle between the polar axis and line OP measured counter-clockwise in radians.

Converting Cartesian and Polar

 To find Cartesian coordinates (x, y) when polar coordinates (r, θ) are known:

$$x = r \cos \theta$$
 $y = r \sin \theta$

Note: This allows any function in the form $r = f(\theta)$ to be expressed parametrically as:

$$x = f(\theta)\cos\theta$$
 $y = f(\theta)\sin\theta$

 To find polar coordinates (r,θ) when Cartesian coordinates (x,y) are known:

$$r^2 = x^2 + y^2$$
 $\theta = \tan^{-1}(y/x)$

Calculus with Polar Curves

- · We wish to be able to do the following:
 - Take derivatives of polar curves
 - Find tangent lines.
 - Determine areas enclosed by polar curves.
 - Find the length of arcs from polar functions.

Derivatives of Polar Curves

 Because we can define polar curves in the form r = f(θ) parametrically with:

$$x = r \cos \theta$$
 $y = r \sin \theta$

 We can use our knowledge of derivatives of parametric functions (along with the product rule) for the polar case.

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r\cos\theta + r'\sin\theta}{-r\sin\theta + r'\cos\theta}$$

Derivatives of Polar Curves

 For the cardioid r = 1 + sin θ find the slope of the tangent line when θ = π/3.

Derivatives of Polar Curves

 For the cardioid r = 1 + sin θ find the slope of the tangent line when θ = π/3.

$$x = r \cos \theta = (1 + \sin \theta) \cos \theta$$

$$y = r \sin \theta = (1 + \sin \theta) \sin \theta$$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{(1 + \sin \theta) \cos \theta + \sin \theta \cos \theta}{(1 + \sin \theta)(-\sin \theta) + \cos^2 \theta}$$

$$\frac{\cos \theta (1 + 2\sin \theta)}{\cos^2 \theta - \sin \theta - \sin^2 \theta} = \frac{\frac{1}{2}(1 + \sqrt{3})}{\frac{1}{4} - \frac{\sqrt{3}}{2} - \frac{3}{4}} = \frac{\frac{1}{2}(1 + \sqrt{3})}{-\frac{1}{2}(1 + \sqrt{3})} = -1$$

Derivatives of Polar Curves (calculator)

· Consider the three-petaled rose curve:

$$r = 2 \sin 3\theta$$

- 1. Graph the curve using technology.
- 2. Find the (x, y) coordinates of the point where $\theta = \frac{\pi}{-}$.
- 3. Determine $\frac{dy}{dx}|_{\theta=\pi/6}$ for this polar curve.
- Write the equation the line tangent to the given curve at θ = π/6.

Area of Polar Curve

Areas of Polar Curves

· Area of a polar curve is therefore:

$$\int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 d\theta$$

• A confounding issue with these areas is determining the limits of integration. It isn't always easy to visualize whether the limits should be $[0,2\pi]$ or something else, because there are both positive and negative r values.

Areas of Polar Curves

· Consider these two curves:

$$r = \cos 4\theta$$
 $r = \cos 3\theta$

- · What shape are each of these?
- If we are finding the area of each of these curves, what are the appropriate limits of integration. Why?

Polar Arc Length

• Polar arc length is found by parameterizing the polar curve $(x=r\cos\theta$, $y=r\sin\theta)$ then finding $dx/d\theta$ and $dy/d\theta$ and using the parametric arc length formula we already know.

Work the following on notebook paper. Do not use your calculator except on problem 10.

- 1. Find the slope of the curve $r = 2 3\sin\theta$ at the point $(2, \pi)$.
- 2. Find the equation of the tangent line to the curve $r = 3\sin(2\theta)$ at the point where $\theta = \frac{\pi}{3}$.

On problems 3-5, set up an integral to find the area of the shaded region. Do not evaluate.

3.
$$r = \theta$$

4.
$$r=1+\sin\theta$$

5.
$$r = 2\sin 4\theta$$

6. Sketch the polar region described by the following integral expression for area:

$$\frac{1}{2}\int_0^{\pi/3}\sin^2(3\theta)\,d\theta$$

- 7. (a) In polar coordinates, write equations for the line x = 1 and the circle of radius 2 centered at the origin.
 - (b) Write the integral in polar coordinates representing the area of the region to the right of x=1 and inside the circle.
 - (c) Evaluate the integral.
- 8. (a) Sketch the bounded region inside the lemniscate $r^2 = 4\cos(2\theta)$ and outside the circle $r = \sqrt{2}$.
 - (b) Compute the area of the region described in part (a).
- 9. Find the area between the two spirals $r = \theta$ and $r = 2\theta$ for $0 \le \theta \le 2\pi$.

Use your calculator on problem 10.

- 10. Given the polar curve $r = \theta + 2\sin\theta$ for $0 \le \theta \le 2\pi$
 - (a) Sketch the graph of the curve.
 - (b) Find the angle θ that corresponds to the point(s) on the curve where x=-1.
 - (c) Find the angle θ that corresponds to the point(s) on the curve where y=2.

Answers to Worksheet 4 on Polar

1.
$$\frac{2}{3}$$

2.
$$y - \frac{9}{4} = \frac{\sqrt{3}}{5} \left(x - \frac{3\sqrt{3}}{4} \right)$$

$$3. \ \frac{1}{2} \int_0^{\pi} \theta^2 d\theta$$

4.
$$\frac{1}{2} \int_{\pi/2}^{\pi} (1 + \sin \theta)^2 d\theta$$

$$5. \ \frac{1}{2} \int_0^{\pi/4} (2\sin 4\theta)^2 \ d\theta$$

6. 1 petal of $r = \sin 3\theta$

7. (a)
$$r = 2 \sec \theta$$
, $r = 2$

10. (a) graph

9. $4\pi^3$

(b)
$$\frac{1}{2} \int_{-\pi/2}^{\pi/3} (2^2 - \sec^2 \theta) d\theta$$

(b) 1.839, 4.295

(c)
$$\frac{4\pi - 3\sqrt{3}}{3}$$

(c) 0.921, 2.563

(b)
$$2\sqrt{3} - \frac{2\pi}{3}$$

A graphing calculator may be required for some parts of this problem.

2013 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 2. The graphs of the polar curves r=3 and $r=4-2\sin\theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5\pi}{6}$.
 - (a) Let S be the shaded region that is inside the graph of r=3 and also inside the graph of $r=4-2\sin\theta$. Find the area of S.
 - (b) A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.
 - (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.

A graphing calculator may be required for some parts of this problem.

2014 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 2. The graphs of the polar curves r=3 and $r=3-2\sin(2\theta)$ are shown in the figure above for $0 \le \theta \le \pi$.
 - (a) Let R be the shaded region that is inside the graph of r = 3 and inside the graph of $r = 3 2\sin(2\theta)$. Find the area of R.
 - (b) For the curve $r = 3 2\sin(2\theta)$, find the value of $\frac{dx}{d\theta}$ at $\theta = \frac{\pi}{6}$.
 - (c) The distance between the two curves changes for $0 < \theta < \frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{3}$.
 - (d) A particle is moving along the curve $r = 3 2\sin(2\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \ge 0$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$.